
Cape Open Interface Revisited
In Term Of Class-Based Framework:

An Implementation In .Net
Maurizio Fermeglia and Marco Parenzan
DICAMP-MOSE, University of Trieste

Piazzale Europa 1, 34127, Trieste, ITALY
mauf@mose.units.it; marco.parenzan@capeopentoolkit.net

The CAPE-OPEN specifications are the standard for interfacing process modelling
software components developed by users into process simulation software (1).
CAPE-OPEN standards are defined as a series of interfaces described in a formal
documentation set. They are based on universally recognized software technologies
developed in the nineties, such as COM and CORBA. Version 1.0 of CAPE-OPEN
specifications is implemented in COM (Microsoft Component Object Model). In
the last years, Microsoft has designed and developed a new specification for
interoperability among different platform for implementing ‘cross platform
software’. The new development environment is called .NET and it is a great step
forward into interoperable and easy-to-develop applications. Since .NET is the
evolution of COM technology, it allows the execution of COM codes and the
integration of COM code and native .NET code. COM interoperability is the
fundamental runtime functionality that allows traditional COM applications using
components developed with .NET languages.
In this paper we present the design and the implementation of a software layer
developed in .NET framework with C#. This software layer talks with the standard
CAPE-OPEN COM interfaces, but allow a much more efficient development of
codes for the process engineers. All this, without modifying the CAPE-OPEN
standard interfaces included into most process simulation software available in the
market today.

1. Introduction
The user who has to design a unit operation in a process simulator needs a clear,
simple and self-descriptive schema, in which it is possible to implement the
equations without wasting too much time understanding the code-structure. For
this purpose, the developer should be able to ignore the effective implementation
of CAPE-OPEN interfaces, and to focus only on the methods which the
programmer has decided to show him. These methods will have to be strongly
standardized so that the user can immediately understand how to use them and how
they work directly by looking at the name of the method and the returned value. To
“hide” CAPE-OPEN standard it is necessary to separate the implementation of
interfaces, which must be unique for all the different projects, from the specific
part of code of the unit operation developed. By doing so, the user will have at his
disposal only two methods of a given class, which will serve as “constructor” of

the unit and as “calculate method”. This corresponds to a simple and rather clear
schema: one method to initialize and another to make it run. Lastly, if he needs a
more complex and “powerful” structure, he could anyway benefit by the object-
oriented model.
The .NET framework allows the developer to use typical and powerful issues of
object orientation such as class inheritance and strong typing. Class inheritance
allows the development of new classes inheriting code from parent classes. Many
times implementation of interface methods is a repetitive work due to
infrastructure needs rather than to a specific need. Class inheritance allows the
building of a class framework minimizing the work needed to code a fully
functional class. Strong Typing is the ability for a compiler to check all types’
compatibility at compile time (“early binding”). This allows avoiding runtime
problems such as “Invalid Cast Exception” due to an extensive usage of Variant
(VB) or void* (C/C++). Besides this, a better experience in coding is an extended
usage of Intellisense in development tools such as Visual Studio .NET that makes
coding a faster and more productive experience.

2. The class based framework
The most important interface in the CAPE-OPEN standard is the
ICapeIdentification interface. It is the basis for every structure which requires a
name and a description (Units, Ports, and Parameters). Other common elements are
some types of error which can occur in each class: ECapeUser, ECapeRoot. Each
class therefore must contain an object which allows the error-handling.
Each class will then be derived from the class which implements ECapeUser and
ECapeRoot, and the classes describing Units, Ports or Parameters will derive from
a class which contains also ICapeIdentification implementation.
Port
The concept of “Port” doesn’t describe an actual element. In other words it
represents a vast set of very heterogeneous elements, even if with similar
characteristics. Therefore, it is not possible to work on a Port if the type it
represents isn’t known. It is then an abstract element which provides the structural
basis for each of its specializations (Material Port, Information Port, and Energy
Port).
Parameters
The analysis is similar to the previous case: the abstraction of Parameter exists, but
the actual element is always a specialization (Integer Parameter, Real Parameter,
etc.). This distinction is implicit in the ICapeParameterSpec interface, to which the
UnitParameter class refers. Therefore, the management of domain and parameter
value is already standardized, thanks to this device, just like in the original VB6
project. To hide the CAPE implementation to the user it is anyway convenient to
manage the Parameters as different entities.
Carried material
If the Unit operation has Material Ports, these will carry material fluxes, to which it
will be accessed by ICapeMaterialObject interface. This interface exposes, for the
setting and the return of property, methods which can be distinguished on the basis
of complexity of syntax and of unnaturalness of the sort of returned value. It would
thus be convenient to encapsulate these methods in other functions and properties

which can hide the effective implementation and can convert the type of returned
value.
Unit
The developer of custom components needs to access only the constructor of the
class which represents the Unit, and the Calculate method. It is therefore possible
to show the programmer only these two methods. The effective implementation of
all the other classes could, and should, be hidden. Consequently, the Unit becomes
an abstract concept and the Custom Unit then becomes the real entity to work on.
A class is defined, which represents conceptually the Unit and implements CAPE-
OPEN interfaces. Another class is defined which allows declaring Ports,
Parameters and the Calculate method of the specific Unit.
The resulting class-based framework is described in figure 1. All classes are
contained in a .NET assembly that needs to be referenced in each unit project to be
developed.

Figure 1: class based framework.

3. Example of application: a dummy test component
One of the main features of the new class based framework is that the component
developed by the user is a totally separated project from the infrastructure code.
The connection is given by the fact that the class of the new component must
inherit from the CapeOpenUnitSimple class in order to allow the process simulator
to access the methods of the ICapeUnit interface and those of the interfaces which
are connected to it. The user has also to “override” OnInitialize and OnCalculate
methods.
Initialization
The creation of ports doesn’t cause many problems even in the original VB6
model, exception made for the fact that, owing to absent-mindedness, a Parameter
could be inserted in the collection of Ports and vice versa. The new implementation
prevents from this possible error. The creation of a Port, and its insertion in the
collection, is obtained by means of the Add method, applied to the “Ports” object,
which is of the PortCollection type. In this last’s signature appears the Create static
method, which returns a different sort of Port, a Material Port in this case,
according to the CapeOpenPortType. If the user tries to insert a Parameter, the
error would be pointed out at compilation time and not at runtime as it used to
happen before.
The creation of Parameters is very complex in VB. In this version instead the task
is definitely simplified. As an example, if one would like to create a Parameter of

the integer type, only the instruction reported in figure 2 are necessary. It is
important to note that there is no need to know CAPE-OPEN standards details any
more, that the operation now requires much less number of lines of codes than
before and that it is no longer required to know the details of the
ICapeIntegerParameterSpec interface.

protected override void OnInitialize() {
 Name = "DummyUnit";
 Description = "Unit Dummy .NET";
 Ports.Add(CapeOpenUnitPort.Create(CapeOpenPortType.Material,
"InputPort", "Input Port of Dummy", CapeOpenPortDirection.Inlet));
 Ports.Add(CapeOpenUnitPort.Create(CapeOpenPortType.Material,
"OutputPort", "Output Port of Dummy", CapeOpenPortDirection.Outlet));
}

Figure 2: code for the implementation of a parameter in the new framework.

Calculate
The first difference that is noticed in the new framework is that the object which
represents the material fluxes isn’t accessible by ICapeThermoMaterialObject
interface but is represented by the CapeOpenThermoMaterialObject class which
has all the Properties that allows the simplified calculation of the equilibrium.
The same reasoning is also done for Ports: it is possible to access Ports not by
ICapeUnitPort interface, but by CapeOpenUnitPort class (it would be just the
same, in this case, to access them by MaterialPort class). The element is returned
through index and the order is the same which has been used in the creation of the
OnInitialize method. It would be the same to use the GetPortByName method, here
applied to the object “Ports”.
The tests on direction and on type are the same, but with the difference that the
used enumerations are those defined in this new project.
The return of the material flux associated with the Port is obtained in any case by
means of the ConnectedObject method. The cast on the returned type is a warranty
of consistency among the types.

protected override void OnCalculate()
{
 double zTemperature = InputPort.Temperature;
 double zPressure = InputPort.Pressure;
 double zEnthalpy = InputPort.Enthalpy;
 double zTotalFlow = InputPort.TotalFlow;
 double[] zFraction = InputPort.Fraction;

 OutputPort.Temperature = zTemperature;
 OutputPort.Pressure = zPressure;
 OutputPort.Enthalpy = zEnthalpy;
 OutputPort.TotalFlow = zTotalFlow;
 OutputPort.Fraction = zFraction;

 OutputPort.CalculateEquilibrium
 (CapeOpenFlashType.PH);
}

Figure 3: implementation of a dummy unit operation with the new framework.

Up to this moment the changes imposed by the new framework are not so relevant
to justify the re-implementation of the code. The return of the values of the flux
properties in the form of variables makes the difference since they are consistent
with the type of quantity they represent. The same applies to the setting of these
values. Finally the CalcEquilibrium method is recalled where the possible values of
the signature are represented by an enumeration. Figure 3 shows the code
necessary for the implementation of the dummy unit operation with the new
framework. The code is particularly simple and clean.

4. The CapeOpenToolkit.NET
The code described above is the fundamental part of the development of a fully
functional unit, but some infrastructure elements are also necessary. In this project
we have developed a complete toolkit to minimize all the complementary
activities. The elements of this toolkit are the following.
Unit Wizard
The original CapeOpen Wizard generated a complete Visual Basic 6 project. We
have developed a new Wizard that targets the current Microsoft .NET Framework
2.0, generating a compatible Microsoft Visual Studio 2005 project.
Some goodies were added: (i) Load/Save of project generation execution, (ii)
Typed parameters and ports, (iii) Multi language targets (C#, Visual Basic .NET)
and (iv) COM Registration metadata
Regunitasm.EXE
The .NET unit implementation cannot avoid the necessary COM plumbing. The
new project template contains all the information needed for a registration activity,
now saved at assembly level. When the generated assembly is installed in the target
machine containing the process simulator, this utility can register the unit with a
simple command:

 REGUNITASM <unit.dll> <Unit Type fullname>

No Windows COM registry info will be needed to perform this tedious operation.

5. Conclusions
The objective of the development of a new framework, as it was stated at the
beginning of this project, is the development of software which allows the creation
of a component module to be used in process simulators in a simple and self-
evident way. The given solution has actually solved most of the problems which
appeared in the previous models and has thoroughly reached the set goals. In
summary, the following items evidence the benefits and the significance of the new
framework.

1. the re-writing of a component is effectively accessible also to a chemical

engineer who has a basic knowledge of informatics;
2. most of errors are pointed out during compilation, thus meaning a faster debug

of the code;

3. it is possible to exploit more complex data-structures, which are available in
.NET;

4. a reference handbook of few pages would allow the user to access most of the
functions he is interested in without concerning about CAPE-OPEN standard
details;

5. the inheritance of the classes allows writing base-components which can be re-
used many times and which are extendible with further inheritance.

The last point is particularly interesting. Assume, as an example, that one should
develop different unit operations, all having a single inlet Port and a single outlet
Port with ‘some’ modification of the material streams inside the unit. The way to
proceed is the following. First the user creates a class, made abstract, that basically
does what reported in figure 3. After, the user will concentrate on the derived
classes, one for each module to be created, each one containing a method, inserted
between the returning and the setting of properties, with the implementation of the
equations relating input and output streams. By doing this, there is no need to know
how Ports and Streams are represented in programming language.

We plan to further develop the framework with the final goal of the complete
hiding of the code to the final user in favor of a developer-environment oriented to
the process engineer user. This environment will allow the user to write the
equations describing the unit operation to be developed without taking care of how
the equations are translated in effective code. This operation will be simple also for
a process engineer who has no familiarity at all with informatic tools and code.
The last step of the development of the framework will be the implementation of
an application developed specifically for the end-user, in which she/he will write
the equation directly in a ‘natural way’ into it. Since it is not possible to separate
informatics from engineering, there is the need to provide the final user (a chemical
engineer) with a simplified and self-explaining development environment which
doesn’t require excessive notions of informatics, like Polymath or Matlab. This
project has the aim to open a road towards that goal.

Thanks to Marco Carone and Letitia Toma for their contribution in toolkit creation.

References
CO-LaN. CO Tester Suite. http://www.co-lan.org/index-10.html.
CO-LaN Methods & Tools Special Interest Group. .NET Interoperability
Guidelines. CO-LaN, 2006.
CO-LaN. Migration Support. http://www.co-lan.org/index-9.html.

